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SUMMARY

• Chaotic signals, man made and naturally occurring, appear to be broad-band 
random noise to traditional signal processors.

• Many man-made signals are not inherently chaotic, but have broad-band behavior.

• Techniques for signal processing derived from the study of chaos provide new 
approaches for signal detection, signal classification, noise reduction, and secure 
communications.

• Noise may be a deterministic signal from a higher dimension that corrupts data 
observed in a lower dimension. Chaotic signal processing techniques often can be used to 
mitigate noise.

• Secure communications based on chaotic signals is attractive because the carrier 
signal appears to be noise to traditional signal detection equipment. Even if an adversary 
knows a signal is present and knows the signal-generating function, interception is still 
difficult.

• Our unique processor incorporates several novel techniques including:

- An easy and fast method of finding a signal’s dimension (degrees of freedom),

- An information theoretic approach to detect signals of unknown and 
arbitrary form

- A technique for noise reduction and secure communications called 
Probabilistic Scaled Cleaning.



TABLE OF CONTENTS

STATEMENT OF PROPRIETARY INTEREST  iii

INTRODUCTION    1
THE FUNDAMENTAL THEOREM    3
PROCESSING OVERVIEW    4

APPLICATIONS    7
Detection and Classification of Signals and Noise Reduction    7
Modeling    7
Covert Communications    8
Machinery Maintenance    8
Multipath Correction   10
Medical   10
Economic   10
Music   10
Environmental   11

DYNAMIC SYSTEMS   12

PROCESSING CHAOTIC SIGNALS   17
Acquire a String of Scalar Numbers   17
Find a Suitable Time Lag, T   17
Find the Minimum Embedding Dimension, dE   20
Embed the Time Lagged Variables in the State Space   21
Determine the local embedding dimension, dL   22
Compute the Fractal Dimension of the Attractor, da   23
Develop the Map   25
Compute the Global Lyapunov Exponents.   25
Compute the Local Lyapunov Exponents   26

Spurious exponents and their elimination   27
Compute the Moments of Invariant Distribution   27

NOISE REDUCTION BY PROBABILISTIC SCALED CLEANING   28

INDEX   30

APPENDIX A - CHAOS READING LIST   31

January 1994



Note: This is a copyrighted work in progress. Much editing remains to be done. It is provided as 
is for the book Smarter Trading, which went to press before the paper was finished. Please 
contact Randle, Inc. for the final version.



STATEMENT OF PROPRIETARY INTEREST

The techniques discussed in this paper are in the scientific literature, as are many other
methods. We ask that the use of these specific techniques by Randle, Inc. and the data we have
processed be treated as proprietary.

Commercial

The information contained herein constitutes valuable trade secrets. This document shall
not be duplicated, used, or disclosed to any person other than the recipient without the written
permission of Randle, Inc.

Government

All government personnel must exercise extreme care to insure that the information in
this proposal is not disclosed to an individual who has not been authorized access to such data in
accordance with 3.104, and is not duplicated, used, or disclosed in whole or part for any purpose
other than evaluation, without the written permission of the offeror. If a contract is awarded on
the basis of this document, the terms of the contract shall control disclosure and use.

This notice does not limit  the government's  right to use information contained in the
proposal if it is obtainable from another source without restriction.

This is a government notice, and shall not by itself be construed to impose any liability
upon the government or government personnel for disclosure or use of data contained in this
proposal.

FAR 15.509



INTRODUCTION

One goal of signal processing is to identify signals by invariant parameters. Identification
of signals traditionally has relied upon detection of discrete frequencies that can be categorized
by Fourier analysis  of sensor data. Some parameters that classify the emitter  are the Fourier
coefficients of the signal.

Fourier analysis, a linear signal-processing technique, relies on assumptions that simplify
models of signals, clutter and noise. These idealizations state that the signal and its environment
are one degree-of-freedom systems, they are perfectly known, the signal is a pure sinusoid, and
the noise is  perfectly  random.  For  example,  when processing manmade radiated  energy,  the
received waveform is assumed to be a replica of an ideal transmitted linear waveform. A matched
filter detector (and the "FFT") recovers the signal by correlating it with a linear model of the
signal. Additionally, the noise is assumed to be Gaussian with a known spectrum. The signals of
interest either have a narrow-band Fourier spectrum or have a Fourier spectrum that otherwise
distinguishes the signal from the noise. The linear approach to noise rejection is to average out
the  seemingly  random  components  of  the  data.  Linear  signals  are  well  understood,  well
exploited,  easily  countered,  and are  not  the  subject  of  this  paper.  Still,  we are  interested  in
nonlinear effects that corrupt otherwise linear signals. Fourier analysis is useless for analyzing
most nonlinear systems.

Nonlinear science, often called chaos theory, has matured to the point where the signals-
processing community can benefit  from this  new understanding of complex phenomenology.
New signal analysis tools derived from the study of chaotic systems and their signals allow the
characterization of complex signals, clutter, and noise. The nonlinear approach is to treat both
the  signal  and  the  noise  as  deterministic  processes  in  a  multidimension  (N-degree-of-
freedom) geometric space. No assumptions are made about a signal. Signals are geometric
objects called attractors. They are categorized by invariant geometric and information conveying
properties  of  the  attractor.  Chaotic  signal  processing  can  detect  signals  of  arbitrary
(nonsinusoidal) waveform and reduce noise for linear signal detection. It also may be possible to
identify low signal-to-noise ratio chaotic signals that are a by product of other emissions. 

Randle, Inc., working with the Institute for Nonlinear Science (University of California -
San Diego) has developed an integrated software system for detecting and analyzing chaotic
signals. This system includes a module that performs Probabilistic Scaled Cleaning (PSC). PSC
is a recurrsive cleaning method that relies on the difference in characteristics between a signal
(even if it is chaotic) and noise. A signal occupies well-defined regions of state space (i.e., it
resides on an attractor), while noise fills the state space according to its distribution. 

The novel  aspect  of  chaotic  signal  processing is  that  signals  are  analyzed in  a time
domain state space, rather than in a frequency domain. The new and remarkable idea is that
systems  with  only  a  few  degrees  of  freedom can  be  chaotic  and  that  it  is  possible  to
reconstruct and analyze chaotic behavior with scalar data collected in only one dimension.

Manmade  chaotic  signals  exist.  Chaotic  acoustic  signals  may  occur  from  normal
machinery operation or may be associated with transients. Examples include air conditioning
noise and pump operations.  Chaotic  electromagnetic  signals  can  be intentionally generated.  

Other types of man-made chaotic signals include ship acoustics, fluid turbulence, flow
noise, plasma fusion, electronic circuits, simple neural networks, structural vibrations, vehicle
dynamics, and dripping faucets. Other types of manmade signals have broad-band spectrums and



can be exploited with these  methods.  Many types  of  digital  communications  signals  have a
sine(x)/x spectrum and are candidates for exploitation.

CHAOTIC BEHAVIOR IS:

Apparently random
Deterministic
Broadband

Rapid divergence from near identical points
(Sensitive to initial conditions)

Everywhere

The techniques for processing chaotic signals are now well defined. Much work has been
done  using  these  methods  on  the  traditional  aspects  of  signal  processing  --  detection,
characterization, and classification of the invariant properties of signals. A remarkable result of
this experience is that a new view of "noise" is emerging. The deterministic signal from a chaotic
system can appear  to  be broad-band noise when processed with traditional  schemes such as
Fourier analysis or matched filters. Thus, when we observe or hear "noise" we wonder if the "no
signal" signal is complex and intractable. Or, are there components that are only a dimension or
two  higher  than  the  signal  processor's  domain?  So,  what  is  noise?  How  can  a  signal  that
masquerades as noise be separated from other "noise?" And, can messages be encoded onto and
separated from "noise?"

Chaotic signal processing is only one tool for analyzing signals. Fourier analysis, high-
order  spectra,  wavelets,  and  chaos  theory  are  complementary.  Chaotic  techniques  can
characterize all classes of signals, but may provide little additional information about signals that
are well behaved in other processors:

Signal Processing Paradigms
Type of signal Linear Nonlinear Chaotic

Definition Superposition applies,
homogeneous

No superposition, 
inhomogeneous

No superposition,
inhomogeneous

Characteristics Discrete tonals Multiple, coupled 
wavelengths

Broad-band

Detection method Fourier analysis Higher order spectra Time delay state space
reconstruction

Signal descriptors Wavelength of tonals Wavelength pairings Attractor characteristics,
Lyapunov exponents

Chaotic  signal  processing  often  works  when linear  techniques,  including polyspectra,
break down. A current belief is that new submarines, for example, have become so quiet that
detection of tonals by passive sonar may be of little use. Passive detection and identification of
submarines has traditionally relied on detection of discrete tonals where target-radiated spikes of
acoustic energy in the Fourier spectrum were well above ocean ambient noise. Modern quieting



techniques have reduced the energy in these discrete tonals to well below the level of ambient
noise. Research has shown that there are radiated signals that can only be detected by chaotic
techniques and not by other means.

Besides the detection and classification of signals, these techniques may also be used to
reduce noise. The invariant properties of a signal are determined and iterative techniques are
used to generate a clean signal that has the same properties as the reference signal. This scheme
allows removal of chaotic noise from other signals or the removal of high-dimension noise from
chaotic  signals.  Noise  reduction  techniques  based  on chaotic  signal  processing  may provide
higher  signal-to-noise ratios  at  much less expense than methods that  operate  directly  on the
signal.

Noise reduction techniques can also be used as the basis for secure communications. A
message, in the clear or encoded, is added to a chaotic carrier. The transmitted signal is broad-
band noise  to  traditional  signal  detection  equipment.  The authorized  receiver  uses  the  noise
reduction  system  to  strip  away  the  chaotic  carrier,  leaving  the  message.  The  unauthorized
receiver is faced with the problem of determining whether a signal is even present, what model is
used  for  the  chaotic  carrier,  and  what  system parameters  were  used  to  generate  the  signal.
Development of new methods for covert communications is important because spread-spectrum
techniques are, ironically, easily detected with chaotic signal processing.

THE FUNDAMENTAL THEOREM

The fundamental  operation  that  makes  chaotic  signal  processing  possible  is  the
reconstruction of an N-dimension geometric object, called an attractor, from a single time
series.

The scalar time series is represented as:

x(n), x(n+1), x(n+2), x(n+3), x(n+4), x(n+5), x(n+6) ... x(n+N-1)

where n is the sample number (usually treated as 0), N is the total number of samples, and x(k) is
the scalar value of the sampled signal at k.

To form the reconstructed attractor, this scalar time series is mapped to a vector time
series of the form:

y(n) = [x(n), x(n+T), x(n+2T), ... x(n+(d-1)T)].



For  any  geometric  dimension,  d,  the  vector  y(n) will  have  d  components  that  are
comprised of d samples in the original series, separated by a "time delay", T. The time delay is
sometimes called the time lag. The method for selecting d and T will be discussed later, but, for
the purposes of the fundamental theorem, any d and T will suffice.

The time lagged vectors are  plotted in  the geometric  ("phase" or "state")  space.  The
principle that makes chaotic signal processing possible is that there is a unique mapping
between d degree of freedom vector sets and vectors reconstructed from the time history of
scalar data collected in only one dimension. Counter intuitive, but true. The original signal
vectors are not reconstructed. The reconstruction yields a unique new vector set that captures the
behavior  of  the  dynamic  system.  Because  the  process  is  invertible,  it  is  an  example  of  a
diffeomorphic transform. Figure 1 shows time lagged vectors for a nonchaotic process embedded
in a three dimension state space. The attractor for this signal is simple and, to the trained eye, is a
sine wave. It will never leave the trajectory shown.

Signals represented in this manner evolve in both time and space. The signal is studied
and exploited by analyzing the geometry of the reconstructed attractor and the rate at  which
information about the signal state is lost.

The techniques for processing chaotic signals are rapidly evolving. A short overview of
the current state-of-the-art follows. Each step of the process is identified by the name of the
scientist who is credited with the development of the technique and the publication date. These
techniques are discussed at length in the following sections.

PROCESSING OVERVIEW

A. Acquire a string of scalar numbers.

Despite  the  degrees-of-freedom  of  the  underlying  dynamic  system,  usually  one  can
collect data from only a single sensor. That is, information from one dimension is usually all that
is available. The novel aspect of chaotic signal processing is to use information embedded in this
one-dimension time series to capture multidimension chaotic behavior.

Acquisition issues that are important to chaotic signal processing include the sampling



rate,  the band width,  the time over which collection is  continuous,  the characteristics  of the
collection system, and the response curve of the sensors.

B. Perform a Fourier Analysis, (Fourier: 1807)

An FFT may provide some clues about dominate periods and the bandwidth of the signal.
Additional  information  about  nonlinear  but  nonchaotic  dynamics  may  be  obtained  from  a
polyspectral analysis. Then again, these techniques may provide little or no information.

C. Find the embedding time delay, T, (Fraser and Swinney: 1986)

The Average Mutual Information, I(T), is a prescription for selecting an appropriate time
delay interval for construction of the time lagged vectors that will be embedded in  dE. Mutual
information determines how much information about subsequent data is embedded in a given
datum. Use of average mutual information to determine the time delay provides better estimates
of other signal characteristics later in processing. Average mutual information also is a method
for detecting a signal. 

D. Find the minimum embedding dimension, dE, (Kennel, Brown, and Abarbanel: 1991)

The minimum dimension of the state space is found by counting the number of close
points (near neighbors) in each dimension that move to more distant regions of the attractor as
dimensions are added. The minimum embedding dimension is the dimension where the number
of false neighbors drops to some small value.

E.  Embed the time delay vectors in a dE state space (Packard,  et.  al.,  Mane, Takens:
1981).

This  remarkable  operation,  while  counter  intuitive,  is  easily  derived.  Phase  space
representations  of systems have been used for 100 years.  A phase space representation of  a
system plots various system values (the system state vectors) on different axis. A typical phase
space plot might show displacement, velocity, and acceleration. One needs one axis for each
independent variable to fully capture the behavior of a system. But, the problem for most real
world  data  collection  is  that  often  only  one  variable  can  be  collected.  The  challenge  is  to
reconstruct the phase portrait, or a proxy for it, from this one data series.

The fundamental theorem demonstrates that time delay vectors built from a single series
is, in fact, a proxy for the vectors for a perfectly known system.

F. Find the local embedding dimension, dl, (Kennel, and Abarbanel: 1993)

The  global  embedding  dimension  is  necessary  to  completely  unfold  the  attractor.
However,  local  evolutions  may  be  adequately  described  in  fewer  dimensions.  This  local
dimension,  dL ≤ dE,  quantifies the degrees-of-freedom that captures motion on the attractor.
Thus, models for prediction or control may also be constructed in  dL  dimensions. The test for
local false nearest neighbors finds,  in each d < dE, the percentage of nearest neighbor pairs  that
move  far  apart  over  some  prediction  horizon.  The  dimension  where  the  percentage  of  bad



predictions becomes independent of the global dimension is dL. 

G. Compute fractal dimension of the attractor, dA (Ruelle: 1983).

The fractal dimension,  dA, of the attractor is one method of classifying a process and
provides information on how much of the state space is filled by the system. For the sine wave of
Figure  1,  the  fractal  dimension  is  precisely  1.0.  Because  this  signal  has  an  integer  fractal
dimension, it is not chaotic. A chaotic signal has, by definition, a noninteger fractal dimension
and the attractor is called a "strange" attractor (Ruelle, 1976).

H. Develop the map.

The map is a function that moves a vector in state space to the next vector as a function
of  time  by using  a  local  polynomial.  The  Taylor  series  expansion of  the  polynomial  is  the
Jacobian of the underlying dynamics. Recent approaches retain the higher order terms to better
fit local curvatures in the attractor (Abarbanel: 1989).

Noise corrupts the local Jacobian and can affect the accuracy of the calculation of the
Lyapunov exponents  (Abarbanel:  1990).  The  effect  of  noise  is  to  blur  the  lower  dimension
attractor. Iterative techniques may be used to refine estimates of the local mapping function and
then pull the measured data back onto the attractor (Hammel: 1990). The recovered attractor can
then be exploited.

I.  Compute  Global  Lyapunov exponents (Eckmann,  Kamphorst,  Ruelle  and Ciliberto:
1986, Abarbanel: 1989).

The  Lyapunov  exponents  describe  the  rate  at  which  close  points  diverge  and  are  a
measure of predictability. If one or more Lyapunov exponents are positive, the system is chaotic.
A QR matrix decomposition of the Jacobian gives Lyapunov exponents for the system.  The
Lyapunov exponents are invariant with respect to initial conditions. Therefore, they are another
way of classifying a chaotic system. Global Lyapunov exponents are an invariant because they
describe the effect of infinitesimal perturbations over infinite time.

J. Compute Local Lyapunov exponents  (Abarbanel, and Sushchik: 1993).

Local Lyapunov exponents govern the growth of small deviations for a finite time and
describe variations in predictability. As noted in the discussion of local false neighbor testing, the
minimum  embedding  dimension,  dE,  may  be  larger  than  the  actual  local  dimension  of  the
underlying dynamics, dL. 

Another method for determining  dL is to use the local Lyapunov exponents (Abarbanel
and Sushchik: 1992) which is based on earlier observations that when time is reversed the true
Lyapunov exponents reverse sign while false exponents do not change sign Eckmann and Ruelle,
and Parlitz). The false exponents result from over embedding.

Spurious exponents and their elimination

Lyapunov  exponents  for  dimensions  above  dE are  spurious.  In  fact,  exponents  for



dimensions  greater  than  the  degrees-of-freedom  that  are  active  locally  are  also  spurious.
Identification  of  these  unwanted,  misleading,  inaccurate,  and  meaningless  parameters  is
accomplished by reversing the time series and computing the Lyapunov exponents for both the
forward and backward time evolutions.

The signs of the exponents for the reverse time series are changed and the values are
compared to the forward pass. The true exponents for each dimension will now be identical (or
very close) for both the forward and reverse pass. The spurious exponents will have different
values.

K. Noise Reduction

In signals  that  have  a  chaotic  (or  noiselike)  components,  we rely  on  the  low
dimensional,  deterministic,  nature  of  the  signal  to  distinguish  it  from  other  signals  that
contaminate it. There are three methods for separating a chaotic or noiselike signal C(n) that has
additive contamination z(n):

The dynamics are known,
A "clean" signal has been measured, or
Only a contaminated signal C(n) + z(n) is measured.

If the dynamics are known and we have knowledge of the actual mapping that evolves
the system in d-dimensional space: x - F(x), we can then use the properties of the vector field
F(x)  to  identify  stable,  unstable,  and  neutral  manifolds.  The  method  of  Hammel  or  its
generalizations can then be used to separate the signal at each time step from the contamination
z(n)  when the signal-to-noise ratio is a few to ten percent.

Chaotic System Invariants

Dimension of embedding space, dE

Local embedding dimension, dL

Fractal dimension of the attractor, da

Time delay for state space reconstruction, T
Global and local Lyapunov Exponents, λi



In the second case, if a "clean" signal from the system has been observed, or can be
derived, we can use this "reference" orbit  Cr(n) to establish the statistics of the system on its
attractor. From the attractor in d-dimensional embedding space, we can find the invariant density
p(x) and the Markov transition probabilities pt(x,y) for the system to be in state space volume dx
around x at time n  and in dy around y at time t+n. Using these two quantities there are at least
two  algorithms  that  allow one  to  separate  the  signal  from the  contamination  when  another
observation is made. The signal  C(n) and the reference  Cr(n) come from the same dynamical
system, but have different  initial  conditions.  Thus,  they have entirely different  orbits  on the
system attractor. Their statistics are the same, however. So, knowledge of  Cr(n) can be used to
identify C(n). The Hidden Markov Model method and the Probabilistic Cleaning method are
cruder than the first technique discussed but are more robust. They have been demonstrated in
cases where the signal-to-noise ratio is as low as -20 dB, and there is no reason to believe they
will not work at lower SNRs within the limits of numerical accuracy.

The final case is where only the contaminated signal is available. A reference orbit is not
available and the system dynamics are not known. This a risky proposition, but there is some
evidence, based on the work of Abarbanel, et. al., that even if the chaotic contamination-to-signal
ratio is high (i.e., the SNR is very low), the Probabilistic Scaling method can isolate and remove
the chaotic component, leaving the signal z(n). At present, this is unexplored territory. This will
be one issue that we are exploring with both Probabilistic Scaling and Hidden Markov modeling
to  find  the  limits  on  "self  cleaning."   The self  cleaning can  easily  be  spoofed,  and we are
exploring methods for that as well.

APPLICATIONS

Detection and Classification of Signals and Noise Reduction

The  most  common  signal-processing  function  is  the  detection  and  classification  of
signals. Often, just knowing that a signal is present is a major objective. Chaotic techniques can
detect signals of arbitrary waveform and signals that are noiselike. These techniques also can
detect signals that are intended to be covert, such as spread-spectrum signals. Foreign literature1
discusses techniques that generate signals that cannot be detected by Fourier or higher order
spectra. These signals can be detected by state space embedding methods.

The primary  signal-detection  tools  are  the  nearest  false  neighbor  embedding method,
average mutual information, and naive state space embedding. Often, a low dimension signal can
be  detected  simply  by  selecting  an  arbitrary  time  lag  and  reconstructing  a  three-dimension
attractor. This can be done very quickly because the operations are all arithmetic.

As discussed earlier, after a signal is detected, it is categorized by its invariants.

Modeling

These methods are useful in the construction, verification, and analysis of other models.
Examination of the output of highly complex models may verify the complexity of the model or

1V. P. Ponomarenko, "Capture Region in a Nonlinear System for Filtering of a Pseudorandom Signal with 
an Arbitrary Manipulation Angle," Radio Technika i Electronica, 20 11 (1975) pp. 53-58 (USSR publication).



aid in its simplification. The output of one high degree-of-freedom model has been shown to be a
much lower degree-of-freedom system, suggesting the original model can be greatly simplified.

Covert Communications

The PSC method works remarkably well when the signal of interest is a binary sequence
( 0's and 1's or the equivalent ±1). If a message is encoded or encrypted for IFF (Identification
Friend or Foe), for example, as a binary sequence then this message can be added to a chaotic
signal with a known reference orbit where the CSR (defined earlier) is large, then the IFF signal
would be masked by the broadband carrier.

The intended recipient can easily strip off the chaotic carrier and read the binary IFF
sequence. This process can be done in near-real time on existing general purpose computers.
Thus, it lends itself well to simple stand alone implementation on a chip. The interrogator would
send a brief signal that essentially asks for broadcast of the IFF signal. The respondent could then
transmit the IFF signal (binary sequence plus the chaotic carrier) while remaining covert.

A chaotic carrier from any model system should work. Conceptually, a long sequence of a
naturally occurring chaotic signal also can be used if its chaotic characteristics are known. Some
issues that we are exploring are the desirable SNR (or, to use our terminology, the SCR) of the
encoding on the carrier, and the effect of the encoding on the FFT of the signal.

Machinery Maintenance

These signal-processing techniques  may be able  to  discriminate  small  changes  in the
vibration of machinery due to incipient faults. An ability to detect impending machinery failure
will reduce maintenance costs and will probably reduce fatality and injury rates. 

If  the signals  from these devices can be characterized by an attractor,  then the issue
becomes one of determining if the attractor changes when a fault develops and how those fault-
induced changes affect the invariants that characterize the attractor. If so, then incipient faults
may be detected by a change in the geometric description of the attractor. Figure 2 shows the
signal and FTT from an accelerometer attached to a high speed gear box. These signals are not
sinusoidal, although they do exhibit a strong periodicity that is driven by cyclical processes.
While there is a predominate period, for the most part the signal appears to be broad band noise.
But,  we can  show that  this  signal  is  deterministic  and can  be  characterized  by  a  “strange”
attractor  (figure  3).  Another  study2 has  demonstrated  that  helicopter  airframe  vibrations  are
chaotic and can be characterized by an attractor.

2Sarigul-Klijn, M. "Application of Chaos Methods to Helicopter Vibration Reduction Using Higher 
Harmonic Control," Ph.D. Dissertation, Naval Postgraduate School (March 1990).







Multipath Correction

Multipath essentially increases the dimension of the signal. If the objective is to eliminate
multipath effects, then the problem is to simply pull the signal back to a lower dimension by
eliminating the highest dimension. The operation is conceptually simple and is done by resetting
the coordinate for the highest dimension to 0 for all reconstructed vectors.

A variation on this technique can be used to determine the point of origin for a signal -- a
multipath direction finding problem. The attractor is formed in real time. The receiver is moved
in the direction that lowers the dimension of the attractor. The point where the signal is of the
lowest dimension should be the closest point to the transmitting antenna.

Medical

The evidence to date suggests that all signals from biological organisms are chaotic. This
makes sense because  chaotic  systems are,  in  fact,  more stable  in  a  global  sense  than linear
systems. A linear system is  easily  destroyed by perturbations while a chaotic  system simply
returns to an attractor. The inherent stability in chaos is probably the mechanism that allows life
to survive the near continuous perturbations in nature. Studies (see Glass and Mackey [1988] in
the reading list)  have  shown that  normal  cardiac signals  are  chaotic,  as  are  brain  activities,
micturition, ion levels in the blood, and breathing, to name a few. From a diagnostic point of
view,  the  techniques  for  the  application  of  chaotic  signal  processing  are  the  same  as  for
machinery maintenance. A normal attractor is characterized. Deviations from the attractor may
be manifestations of problems. For example,  heartbeats may become more regular prior to a
heart  attack.  Thus,  a  lowering  dimension  of  cardiographic  traces  may  indicate  preventive
treatment.

The pattern of many disease outbreaks is also chaotic. A classical example is influenza in
New York City. Records on instances of influenza have been kept since 1900. These data have a
well-defined  attractor.  Thus,  chaotic  signal  processing  may  be  used  to  predict  outbreaks  of
diseases and their severity.

Economic

Economic systems are good candidates for study by chaotic techniques.  For the most
part,  economic indicators appear  to  be low dimension noninteger  fractal  dimension systems.
Much work remains to be done, but a primary interest is prediction of market movements and
detection of leading indicators. If these systems are chaotic, then the limits on predictability are
the major issue. Chaotic techniques (average mutual information, for example) can determine if
economic indicators are related and if there is predictive value in a series. 

A major issue, however, is that there may not be sufficient data to adequately characterize
an  attractor.  For  example,  if  an  indicator  is  sampled  one  a  day  for  ten  years,  there  are
approximately 2,500 samples. This may be sufficient to characterize a three- or four- dimension
system, but is definitely not adequate for six or seven dimensions. Processing these data may
result in "saturation" at three to five dimensions that may be mistaken for a low- dimension
system.

Music



A pure sine tone is very aggravating. It has no aesthetic appeal what so ever. But, the
holding of a note by a trained musician is a melodic accomplishment. Work to date is slim, but
multiphonic tones from saxophones and clarinets are chaotic (Keefe and Laden, 1991). Another
experiment used a chaotic map to produce a rather pleasing tone. Thus, we have evidence that
music has chaotic qualities working from two directions. In one case,  music is shown to be
chaotic,  in  the other  case one type  of  chaos  makes  music.  Randle,  Inc.  is  processing larger
segments of symphonic music looking for these attributes. Early results are encouraging, but
music is a very complex process.

Aside  from the  scientific  interest,  the application of  chaos  theory  may lead to  better
music theory and insights about the perception of sound.

Environmental

The chaotic nature of weather is evident to anyone who lives in the Washington, D.C.
area. Local weather forecasts are often good for only a few hours. The primary problem in the
application of chaotic signal processing to environmental data is the amount of data that can be
collected.  One hundred years  of  daily  weather  readings  is  only about  36,500 data.  Intuition
suggests that weather is a very high degree-of-freedom system. Thus, even several temperature
readings a day for a hundred years may not adequately define a long-term behavior. On the other
hand, several reading a day for a year may define an annual attractor that is representative of
yearly fluctuations.

Nonetheless,  chaos  theory  and chaotic  signal  processing are  an important  tool  in  the
analysis of the global environment. 



DYNAMIC SYSTEMS

A dynamic system is a system that changes over time. Systems analysis defines attributes
of a system that are invariant and encompasses characterization, prediction, and control. Useful
tools for the issues discussed in this article include the Fourier spectrum, state portraits (also
called flow charts), and difference maps.

One method of characterizing a periodic linear system is to describe it in terms of the
Fourier spectrum that is a graph of how much energy is contained in a given frequency band.
Because a nonlinear system can display multiperiod or aperiodic behavior, the utility of Fourier
analysis diminishes as chaos is approached and other methods of characterizing a system are
needed. Fourier analysis is inherently a one-dimensional tool and the dimensionality of many
processes of interest is much higher.

The  "trajectory"  of  a  system is  the  change  in  the  state  variables  over  time.  Various
methods of plotting trajectories are one means of visualizing the characteristics of a dynamic
system. A plot of the displacement-versus-velocity of a forced pendulum is one example of a
trajectory.  A "flow" is  a  group of  trajectories  that  originate  from adjacent  initial  conditions.
Finally, an "action" is a stroboscopic view of a variable at some defined periodic time (such as a
Poincaré map) or circumstances in state space (x = 10, y = 15, for example).

An "attractor" is the point or set of points toward which the trajectory of a system tends
in the long term (Ruelle and Takens: 1971). An attractor may be a single point, such as a local
minimum, or a closed curve for periodic behavior. The attractor may be such a complicated set of
points that trajectory appears to wander randomly about the state space. The system dynamics are
chaotic and is said to have a "strange attractor."

While  this  paper  only  addresses  one  restricted  aspect  of  signal  processing,  the
terminology and ideas  apply  to  many classes  of  problems.  A panoramic  view is  that  signal
processing is just one type of information extraction from data. In this sense, signal processing is
no different from characterization of invariant information in a text-type data base. 

Duffing's oscillator will be used as a model system in the discussions that follow. It is an
example  of  a  deterministic  system  that  can  display  low-dimension  nonlinear  and  chaotic
behavior. This is a simple system that can be implemented electronically (Georg Duffing: 1904)
or easily simulated on a computer. It has the form:

where f is the magnitude of the forcing, d is the damping, and a is a linear stiffness term. Because
it is a low dimension system, its behavior can easily be visualized. 

Linear Systems

A linear system is one for which superposition and homogeneity are satisfied. That is,
additive  excitations  result  in  simple  additive  responses  where  the  relative  magnitudes  are
preserved. The assumption is that there is no interaction between components of the input signal
within the system. A small change in one parameter results in a small and proportionate change
in the output. In reality, these assumptions are only met for a narrow range of system behaviors.
A challenge for  engineers  was to  insure  that  systems to  be modeled  remained,  or  could  be

˙ ̇ x + d ˙ x +ax+ x3 =fsin(ωt)



assumed to remain,  near a state  where these assumptions were almost true3.  For example,  a
pendulum can be treated as a linear system only if the displacements from the vertical are small.

Many systems that are treated and controlled as linear systems are,  in fact,  nonlinear
systems whose operating regime is restricted to a region where it appears to behave linearly. The
caveat that is traditionally applied to these systems is "assuming the system can be kept close to
equilibrium . . . .." The implication is that if the system transcends these bounds, the control
problem becomes intractable because the linear control model fails.

Nonlinear Systems

A nonlinear system may exhibit more complex behavior than a linear system. A small
change in the input may result in disproportionate or counter-intuitive changes in the system
response.  A pendulum with  forcing  and damping is  nonlinear,  especially  when far  from the
vertical.  Friction is another example of a nonlinear influence because the amount of friction
depends on the initial difference in energy between two surfaces. Its effect varies with the system
conditions.

Figure  5  shows the  trajectory   of  Duffing's  oscillator  in  a  nonlinear  regime.  For  the
parameters shown, the system exhibits a three-period behavior -- the orbit repeats itself every
three periods. A Poincaré map of this system is just three points. The Fourier power spectrum for
the acceleration term, Figure 7, shows that even a simple nonlinear system may have a broad-
band power spectra.

Neither  superposition nor  homogeneity apply to  nonlinear  systems.  From a modeling
standpoint, the nonlinear terms in the equations describe how energy flows between the various
components of the system. Because all state variables in a nonlinear system are related, even if
weakly, measurement of one variable is sufficient to capture the behavior of all variables.

3Richard C. Dorf (1967), Modern Control Systems. Addison-Wesley: Reading, MA. pp. 21-22.



Chaotic Systems

Chaotic systems display apparently random behavior but are deterministic. Chaos is not
random and is structured when viewed with the proper tools. 

The signal trace shown in figure 6 is a signal from Duffing's oscillator when it operates in
a chaotic regime. The Fourier analysis of this signal is shown in figure 7. Figure 8 shows the
chaotic trajectory. The system is operating in a regime that very close to the nonchaotic case
shown in figure 6, so, one would expect the FFTs to be similar. Over a longer period, the FFT
becomes more broad band as more of the state space is visited.



Figure 8 has many places where the trajectories cross. In reality, this cannot be. If the
trajectories really crossed, the state vectors would be identical at the intersection. If the state
vectors were truly identical, the trajectories would never diverge. But, they do.

There are two explanations. First, we know that this system has three degrees of freedom.
Thus,  displaying a portrait  of  the trajectory of any two discards information about  the third
dimension. The trajectories do not really cross, we have just chosen too low a dimension to
display the system adequately.

Second,  there  are  regions  where  the  trajectories  appear  to  be  identical,  then  diverge.
Besides the influence of the hidden variable,  this  illustrates the effects  of round off error in
displaying chaotic portraits. The trajectories are not really identical, they are just too close to
resolve.  No matter how much the resolution is  improved, seemingly similar  trajectories will
diverge if the system is chaotic.

This divergence of very close points in state space is a defining attribute of chaos
and is measured by the Lyapunov exponents. If at least one Lyapunov exponent is positive,
close trajectories will diverge and the system is, by definition, chaotic.

Figure 9 shows a Poincaré section of the portrait of figure 9, taken over 6,000 cycles. The



section is a plot of the displacement and velocity terms at the end of each cycle -- one method for
forming a Poincaré section. A sense of the fractal nature of the strange attractor for this system is
evident.

A defining attribute of a chaotic system is that the future state of the system is critically
dependent  on  its  initial  conditions.  Close  but  unresolvable  initial  conditions  lead  to  large
divergences in trajectories, so information about prior states is lost as the system evolves. Thus,
long term predictions of chaotic systems state are, by definition, doomed to failure. The inability
to predict weather for even a few days in advance is a dramatic example of mans' futile grappling
with a chaotic system. While long-term predictions of chaotic systems state are not possible, it is
sometimes possible to make short-term predictions depending on the accuracy of the model, the
precision  of  the  variables,  and  how  fast  adjacent  trajectories  diverge,  as  measured  by  the
Lyapunov exponents. The Lyapunov exponents are an invariant of a system and are independent
of initial conditions. Thus, they also are one means of classifying a system.

A second necessary, but not sufficient condition, for identifying chaos is that a chaotic
signal (or more generally, information in data) will masquerade as broad-band noise. Thus, linear
methods  for  analyzing  chaotic  systems  (such  as  the  Fourier  power  spectrum)  do  not  work.
Another  problem in dealing with  chaotic  systems is  that  the  signal  can  be contaminated by
external broad-band noise, which is indistinguishable from the desired signal. A corporate lack of
understanding of "noise" prohibits development of simple models for noise rejection.

Finally, the Hausdorff dimension (or more commonly the "fractal dimension") provides a
measure of the extent to which the strange attractor (and therefore, the Poincaré mapping of a
chaotic  system)  fills  the  m-dimensional  embedding space  and is  one means of  classifying  a
signal.



SIGNAL PROCESSING ISSUES
IN LINEAR AND NONLINEAR SYSTEMS

LINEAR SIGNAL PROCESSING NONLINEAR SIGNAL PROCESSING
FINDING THE SIGNAL

NOISE REDUCTION: DETECTION
-------

Separate broad-band noise from narrow-band
signal using different spectral characteristics. If

system is known, make matched filter in
frequency domain.

FINDING THE SIGNAL

NOISE REDUCTION: DETECTION
-------

Separate broad-band noise from narrow-band signal
using deterministic nature of the signal. If system is

known, make matched filter in time domain.

FINDING THE SPACE

FOURIER TRANSFORMS

-------

Use Fourier space methods to turn differential equations
or recurrsion relations into algebraic forms:

x(n) is observed;

x(f) = 3 x(n)e(i2πnf)  is used

FINDING THE SPACE

STATE SPACE RECONSTRUCTION

-------

Using time lagged variables, form coordinates for the
state space in d dimensions:

y(n) = [x(n), x(n+T),...,x(n+(d-1)T)]

How to best determine d and T? Use false neighbor
embedding and average mutual information.

CLASSIFY THE SIGNAL

  Sharp spectral peaks

  Resonant frequencies of the system

  Quantities independent of the initial conditions

CLASSIFY THE SIGNAL

  Invariants of orbits

  Lyapunov exponents; Moments of invariant
distribution in state space

  Quantities independent of initial conditions

MAKE MODELS, PREDICT, and CONTROL

x(n+ 1) = 3 cf(n−j)

Find parameters cj consistent with invariant classifiers
(spectral peaks).

MAKE MODELS, PREDICT and CONTROL

y(n) 6  y(n+ 1)  as time evolves
y(n+ 1) = Fy(n),a1,a2, ... ap

Find parameters aj consistent with invariant classifiers
(Lyapunov exponents, dimensions)

Table by Henry D. I. Abarbanel



PROCESSING CHAOTIC SIGNALS

The methods  we use,  shown in the  table,  were  developed by Henry D.I.  Abarbanel,
Reggie Brown, Matt  Kennel  and others at  the Institute for Nonlinear Science,  University  of
California, San Diego. These procedures are based on information theoretic analyses to ensure
that the best parameters are derived. Other less rigorous methods yield results that lead to greater
errors in subsequent procedures.

The sensor output or signal detector provides a sequence of scalar numbers,  x(1), x(2),
x(3)  . . . x(N) at times  t0 + n∆t. After the signal is detected, time lagged vectors are used to
construct  a  d  dimension phase space  that  serves  as  the  coordinate  system for  capturing  the
attractor for the system4. The time lagged vectors have the form:

y(n) = [x(n), x(n + T), x(n + 2T),  . . . x(n + (d - 1)T)].

Embedding the vectors  y(n) in the  d dimension phase space to form a  phase portrait
(figure 1) is a major objective. The use of the word "phase" may lead to some confusion. Our
usage bears no relationship to signal phase. For the sake of clarity, we use the term "state  and a
suitable number of dimensions must be identified. After the state space portrait is formed, the
system can be analyzed.

The organization of our processor is shown in figure 12. The procedures, in detail, are:

I. Acquire a String of Scalar Numbers.

This may be a nontrivial exercise if the signal-to-noise ratio is low, the bandwidth of the
signal is unknown, or the location of the signal in the spectrum is not known. Because a chaotic
signal is, by definition, broad band and may masquerade as noise, collection may be difficult.
Other factors that influence detection of chaotic signals are identical with those experienced with
linear signals. The bandwidth of measuring equipment and operating the equipment at the correct
time and place are important considerations.

Despite  the  degrees-of-freedom  of  the  underlying  dynamic  system,  one  can  usually
collect data from only a single sensor. That is, information from one dimension is usually all that
is available. The novel aspect of chaotic signal processing is to use information embedded in this
one dimension time series to capture multidimension chaotic behavior.

The dynamical dimension is the number of degrees-of-freedom for the system and is the
number of Lyapunov exponents for the system. The time series of a single variable (acquired in
one dimension) can be used to construct coordinates for the multivariate state space because in a
nonlinear system all variables are coupled. The behavior of any one variable has embedded in it
full  knowledge of the behavior of all  other variables. The bottom signal trace in figure 8 is
chaotic and will be used as an example in this discussion.

II. Find a Suitable Time Lag, T.

4Eckmann, J.-P. and D. Ruelle, "Ergodic theory of chaotic and strange attractors", Rev. Mod. Phys. 57 3,
pp. 617-656 (1985)



Recent approaches are to define T based on the idea of average mutual information5.
The Average Mutual Information,  I(T), is a prescription for selecting an appropriate time delay
interval (T) for construction of the time lagged vectors that will be used to build the attractor.

Within a given dimension, it also is a signal detection tool for unknown signals.  I(T)
defines how much one learns about a datum by having knowledge of another datum. The mutual
information of a system is the amount of knowledge (expressed as bits) that one can derive about
two datums separated by the time lag, T.

Mutual information was first used by Shannon6 to measure corruption in communications
channels.  He  postulated  a  transmitter,  a  channel,  and  a  receiver.  Mutual  information
quantitatively  describes  the  amount  of  information  that  is  conveyed  through  the  channel.
Shannon also defined "information entropy."

This idea was extended to dynamical systems in 1960 by Y. Sinai and to chaotic systems
in 1981 by Robert Shaw. The physical communications channel of Shannon can be replaced by a
dynamical system. That is, given a knowledge of the system state at some time (or location), the
state of the system at other times or locations can be derived. Mutual information tells us how
much knowledge is conveyed. For a true linear system with no noise, such as a pure sine wave,
knowledge of the system state (the amplitude) at any time is sufficient to define completely the
system at any other time. If the signal is corrupted by noise, or if the system is chaotic, then
information is lost over time.

In 1986, Andrew Fraser and Harry Swinney published "Using Mutual Information to Find
Independent  Coordinates  for  Strange  Attractors."7 This  landmark  work  showed  that  mutual
information does provide significant information about chaotic systems. A subsequent paper and
dissertation extended the two-dimension ideas to multiple dimensions and called the technique
"minimum redundancy analysis." We retain the term Mutual Information for no particular reason
even though we are technically performing minimum redundancy computations. 

The mutual information in two dimensions is defined in terms of the joint probabilities of
the two datums:

IAB (T ) = P∑ A,B
a,b( )log2

PA, B(a,b)
PA(a)PB(b)
 ⎡
 ⎣ ⎢

 ⎤
 ⎦ ⎥

Mutual information is a measure of general dependence and is loosely related to the idea
of  correlation  functions  and  autocorrelation.  But,  correlation  functions  only  measure  linear
dependence. The first zero crossing of the autocorrelation is often used to determine the time
delay. But, average mutual information provides better estimates of the time lag to use for the
state space reconstruction of the attractor.

The determination of the time lag,  T, is important because an optimum selection of  T
gives best separation of neighboring trajectories within the minimum embedding space. This is
important  because  calculation  of  the  Lyapunov exponents  relies  on  solving  a  matrix  that  is
comprised of descriptions of how close trajectories diverge. If the trajectories are not separated,
then the matrix will be ill conditioned and may not be solvable.

5A. M. Fraser and H. L. Swinney. "Independent coordinates for strange attractors from mutual 
information," Phys. Rev. A, 33:1134-1140, Feb. 1986.

6C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, 
Urbana, 1949.

7A. M. Fraser and H. L. Swinney, "Using Mutual Information to Find Independent Coordinates for Strange 
Attractors", Phys. Rev. A. 33: 1134-1140, Feb 1986.



If T is too small, there is little new information contained in each subsequent datum. If T
is too large,  x(n) and x(n+T) will appear to be random with respect to each other for a chaotic
system. In fact, T can be somewhat arbitrary for an infinite amount of noise free data. The quality
of the state space portrait depends on T, so it is desirable to select some value that is reasonable. 

Figure  11  shows  a  plot  of  I(T) for  four  simulated  systems.  The  sine  wave  is  the
prototypical linear signal. The plot shows that if a state vector (the amplitude) is known, the
behavior of a sine wave is perfectly known for all time.

I(T) for a polyspectral (a nonlinear but not chaotic) signal is also shown. While it has
some randomlike characteristics, the average mutual information of this signal is high and does
not decrease with time.

Finally,  I(T) for two chaotic systems are also shown in figure 11  -- the Lorenz system
and Duffing's oscillator. Average mutual information drops off rapidly as the time lag increases
(which, by definition, shows that these systems have positive entropy). Essentially, the signal
rapidly becomes random with respect to itself. A plot of a truly random signal (or a signal that is
random in a two-dimension state space) drops to near zero even at T = 1.

The  first  local  minimum  of  I(T) determines  an  optimum  value  of  T.  For  Duffing's
oscillator,  Topt =  9.  For  a  chaotic  system,  as  T increases  past  this  point,  ambiguities  in  the
correlation between x(n) and x(n + T) arise -- they start to appear to be random with respect to
each  other.  The  state  space  portrait  begins  to  loose  resolution  and the  fractal  nature  of  the
attractor starts to become blurred. Information is being lost. I(T) for a truly random signal is zero
for all time lags, except 0. Thus, mutual information provides one rationale why chaotic signals
appear as broad-band noise to a linear processor.



These calculations are sensitive to the number of values used in the time lag vectors and
to the number of dimensions. For a clean signal of dimension three, a sample size of 32,768 is
the minimum number of samples that will yield good results. For dimensions greater than three
or four, many more samples may be required to get an accurate estimate of I(T).

Figure  15  shows  the  average  mutual  information  for  several  real  signals.  The  tape
recorder  hiss  has  a  higher  average  mutual  information  than  the  other  signals  because  it  is
somewhat more deterministic -- the range of possible values is very small, so knowledge of any
point provides significant knowledge about where any other value lies. The other two systems,
the automobile engine and the cat purr, rapidly decorrelate (in a multidimension nonlinear sense)
from themselves and I(T) is much lower.

In a manner analogous to using the Fourier power spectrum as a signal detection tool,
average mutual information can be used to detect signals. With the FFT, one asks “is there a
Fourier coefficient that has a significantly higher amount of energy than other coefficients. 

We have conducted detection tests  using average mutual information as the detection
metric on simulated spread spectrum signals down to -40 db SNR and have worked with a real
signal of this type at an estimated SNR of 5. Spread spectrum signals are easily detected with
chaotic techniques.

III. Find the Minimum Embedding Dimension, dE. 

If a dynamic system can be described by n independent variables, then the full behavior
of the system can be observed in a n dimensional "state" space. But, the attractor of the system
may be contained in a subset of the state space with dimension dA, and may be described in a
state space, d, that is much smaller than n. This minimum embedding dimension dE is, at most,
the first integer greater than 2dA; it may be less.

The  dimension  of  the  underlying  dynamics,  d,  determines  how  many  Lyapunov
exponents are useful. Determination of the minimum embedding dimension,  dE, is of practical
interest because the computation burden rises dramatically as dimension increases. Further, noise
fills all dimensions, so computations carried out in a higher than necessary dimension will be
corrupted by noise. If dE is too small, the trajectory may cross itself and neighbors at a point in
this area may be indistinguishable in the lower dimension. Generally, by making dE > 2dA self



intersections can be avoided (Mañé and Takens)8,9.
A new method of determining minimum embedding dimension is  used in  our processor10.  As
dimension is increased, attractors "unfold."  Points on trajectories that appear close in dimension
d may move to a distant region of the attractor in dimension d+1. These are "false" neighbors in
d and the method measures the percentage of false neighbors as d increases. Trajectories that are
close in d are tallied, and the number of these trajectories that become widely separated in d+1
are calculated. Over the data one tallies

where Rd is the Euclidian distance between a point and its nearest neighbor and R tol is the criteria
for declaring whether the neighbors that are close in d are distant in d+1.

A second criteria is necessary because the nearest neighbor is not necessarily “close.” If
the nearest neighbor to a point is false but not close, then the Euclidian distance in going to d+1
will be µ 2Ra. So, the second criteria is

Rd+1(n)
RA

> Rtol

where

A nearest neighbor is false if either test fails.
For a noiseless signal, the number of false neighbors becomes zero when the minimum

embedding dimension dE is reached. A noisy signal drops off dramatically, but does not become
zero. For SNRs as low as 6 to 10 dB, the percentage of false neighbors drops below 1% for d ≥
dE.

8Takens, F. in Dynamical Systems and Turbulence, Warwick 1980, eds. D. Rand and L.S. Young, Lecture 
Notes in Mathematics 898, (Springer, Berlin), 366 (1981).

9Mañè R., in Dynamical Systems and Turbulence, Warwick 1980, eds. D. Rand and L.S. Young, Lecture 
Notes in Mathematics 898, (Springer, Berlin), 230 (1981).

10Kennel, Matthew B., R. Brown, and H. D. I. Abarbanel, "Determining embedding 
dimension for phase-space reconstruction using a geometrical construction," Phy. Rev. A 45 pp. 
3403-3411, 15 March 1992.
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Figure 13 shows these calculations  for Duffing's  oscillator.  The minimum embedding
dimension appears to be 4, which is consistent with our knowledge of the system.

IV. Embed the Time Lagged Variables in the State Space.

Once T and  dE are determined, the time lagged vectors are plotted in the state space to
form the portrait. If the dimension is low enough, computer generated graphics may be used to
display the portrait.  Dimensions up to four have been plotted, where the fourth dimension is
represented by colors. If the dimension is greater than four, the portraits cannot be effectively
visualized.

Figure 16 shows the reconstruction of a chaotic trajectory for Duffing's oscillator. It is
different from figure 9 partly because this portrait is shown in a three dimension space with a



rotated coordinate system. Portraits reconstructed from time lagged scalars do not completely
resemble portraits developed from the original vectors. But, the invariant properties are unique
and can be used to identify and exploit the signal. Figures 16 through 21 show reconstructed
state space attractors for a variety of systems.

Appendix B shows how the selection of T affects the state

space portrait of Duffing's chaotic oscillator. At T = 0, there is no time lag and every datum is
plotted against itself. As T increases, the attractor begins to unfold. For  T = 6 and  T = 7 the
characteristics  of  the  attractor  are  well  defined.  After  this  point,  the  portrait  becomes
progressively indistinct. In effect, the reconstructed signal is losing information about itself as T
increases.

Figure 15 has many places where the trajectories appear to cross. In reality, this cannot
be. If the trajectories really crossed, the state vectors would be identical at the intersection. If the
state vectors were truly identical, the trajectories would never diverge. But, they do.

There are two explanations. First, we know that this system has three degrees of freedom.
Thus, displaying a portrait of the trajectory in two dimensions discards information about the
third dimension. The trajectories do not really cross, we have just chosen too low a dimension to
display the system adequately. Real signals (figure 20, for example) have attractors that appear to
be much more ill defined than the simulated signals for several reasons. First, we usually display
the  portraits  as  three-dimension  systems  projected  on  the  two-dimension  page.  But,  these
systems are  probably  more  than  three  dimensions.  The portraits  are  reconstructed  from real
signals and reflect the messy real world and less than optimum collection circumstances. So, we
personally like real attractors better than the simulated ones.

V. Determine the local embedding dimension, dL.

The  global  embedding  dimension  dE is  necessary  to  completely  unfold  the  attractor.
However, local evolutions may be adequately described in fewer dimensions11. If such a local
dimension dL exists and if  dL < dE, then all the important dynamical behaviors can be captured in
dL. The local dimension does not vary for different regions on the attractor. It is is the invariant
degrees of freedom that describes the deterministic behavior for all finite regions on the attractor.

Predictive models are usually made for finite horizons. So, a model in dE would contain
11Abarbanel, H.D.I. and M.B. Kennel, “Local False Nearest Neighbors and Dynamical Dimensions from 

Observed Chaotic Data”, Phys. Rev. E., 47, 3057-3068 (1993).



more degrees of freedom than are necessary for finite time predictions. If dL < dE, then the model
can be simplified.

The  method  for  calculating  the  local

dimension  is  straight  forward.  Nearest  neighbors  for  many  neighborhoods  are  found.  If  the
trajectories for these neighbors separate faster than is expected for close neighbors, it can be
presumed that the separation is caused by the projection into too few dimensions. Referring back
to figure xx, the trajectories associated with close neighbors remain close for some reasonable
period. Those that apparently cross because of the projection onto the page separate rapidly. The
task is simply to define a criteria for how fast sufficiently embedded trajectories should separate
and then test a large number of neighborhoods against this criteria.

A neighborhood is selected and a local coordinate system is defined using the principle
components of the neighborhood. This results in coordinates lying along the eigendirections for
the neighborhood (the direction where most of the trajectories are “headed”). This procedure is is
relatively simple and easy to compute. The nearest neighbors in the local coordinate system are
then selected.

For all pairs of neighbors, the percentage in each neighborhood for which the trajectories
remain “close” is computed. “Close” is arbitrarily defined as some size relative to the overall size
of the attractor. The embedding dimension is then increased and the computations are repeated.
The  dimension  where  the  percentage  of  “bad”  predictions  becomes  independent  of  the
embedding dimension is dL. The beauty of this scheme is that one does not care if the predictions
are good, bad, or indifferent. The only issue is when do the predictions become independent of
the embedding dimension. Hence, an easy to calculate prediction estimator can be used.

Duffing’s oscillator is described by three first-order ordinary differential equations. The
global  embedding  dimension  for  this  system is  6,  based  on  the  earlier  global  false  nearest
neighbor calculations. But, figure xx shows that dL = 3. The metric is 10% of the mean size of the
attractor and 19 samples. That is, if the trajectories separate by more that 10% of the attractor
size in less than the nonlinear decorrelation time (Topt from average mutual information), the
prediction is bad.

This confirms that a prediction model derived solely from observations of the data would
need only three degrees of freedom. In this case, we know that a priori, because we generated the
signal from a simulation we wrote. But, in most interesting real world data analysis, one does not
have that advantage.

VI. Compute the Fractal Dimension of the Attractor, da.



The fractal dimension of the attractor12,  da, provides information on how much of the
state space is filled by the system. One interpretation of da is that it measures how many degrees
of freedom are significant. Another interpretation of the fractal dimension is that it provides a
measure of how an object's bulk scales with its size: bulk = sizeda. Bulk that can be associated
with  volume  and  size  is  then  interpreted  as  Euclidean  distance.  A plane,  for  example,  has
dimension two because the area = d2.

The fractal dimension of the attractor,  da, may be estimated using Ruelle's approach by
calculating the number of spheres or boxes, N(r), of size r that capture all points as r approaches
zero:

da ≈
log(N(r))
log1r( )

asr→ 0

Grassberger  and  Procaccia13 defined  a  relatively  easy  approximation  (the  correlation
dimension) that may be done on a PC for high SNR signals of low dimension. One major issue is
the  sensitivity  of  these  calculations  to  signal  SNR.  The  amount  of  data  required  to  do  the
calculations may dramatically increase as SNR decreases. In fact, if the diameter of the attractor
is an order of magnitude  greater than the smallest r, then N = 10d/2 14. The computation burden in
high dimensions, even with this algorithm, is significant. Also, real signals may not have even
distributions across small r and it is necessary to use local smoothing to reduce wide fluctuations
in the region of interest.

12F. Hausdorff, "Dimension and ausseres Mass," Math. Annalen, vol 79, pp. 157-179, 1918.
13P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors", Physica 9D, 189 

(1983).
14D. Ruelle, Proc R. Soc. A 427 (1990) 241.



Figure 21 shows these calculations for Duffing's oscillator. The raw counts of N(r) are on
top and the local slope of log(N(r))/log(1/r) for all r is in the middle. The final estimate of dA for
Duffing's chaotic oscillator, are the slopes at the cursor. The point chosen is the smallest r for
which the counts are reliable.

The final estimate of dA is 2.5. This is consistent with our other knowledge of the system.
That is, the fractal dimension meets Ruelle’s criteria, 2dA +1 < dE. A correlation dimension of 2.5
is also consistent with the local dimension of 3.

As a practical matter, however, these computations are easily corrupted by noise. Even a
small  amount  of  contamination  is  sufficient  to  blur  the  attractor  and  make  the  results
meaningless.

VII. Develop the Map.

The map is a function that moves a point in state space to the next point as a function of
time by using a local polynomial. The Taylor series expansion of the polynomial is the Jacobian
of the underlying dynamics. Recent approaches retain the higher order terms to better fit local
curvatures in the attractor.

This  step  develops  a  function  that  maps  small  displacements  in  the  orbit  into  small
displacements at the next time step by defining a local polynomial that maps y(n) to y(n+T2). The
map describes the distance between nearby orbits and how the distance between these neighbors
change over time. The distance between neighbors at T0 is zr(n;0). The corresponding distance at
time T2 is: 

A Taylor series expansion of F contains the Jacobian of the underlying dynamics. Until
recently, only the first term in the Taylor series was retained. Our approach is to retain terms that
are up to fifth order in the Taylor series. The terms in the ill-conditioned Jacobian matrix are
solved by a least squares fit. The problem is computation intensive because a Nb x dE matrix must



be  inverted  dE times.  It  is  desirable  to  include  the  higher  order  terms  in  the  neighborhood
mapping because the corresponding Jacobian provides a better fit to local curvatures of the data
set15 and all the Lyapunov exponents can be derived. Small errors caused by excluding the higher
order terms can lead to large changes in the computed Lyapunov exponents.

VIII. Compute the Global Lyapunov Exponents,λ.

The Lyapunov exponents describe the rate at which close points diverge. If one or
more  Lyapunov exponents  is  positive,  the  system is  chaotic16.  The  Lyapunov exponents  are
invariant with respect to initial conditions and smooth changes of coordinates. Therefore, they
are another way of classifying a chaotic system. The practical interest in Lyapunov exponents is
that  they  are  a  measure  of  predictability  and  the  limits  on  predictions.The  algorithmic
requirements are that all exponents must be found, the results must be accurate for small sample
sets and the algorithm and results must be robust to noise.

The Lyapunov exponents may be calculated from the Jacobian of the map by the QR
decomposition technique discussed by "EKRC."17 The Lyapunov exponents are a measure of
how  quickly  the  trajectories  of  very  close  points  in  state  space  diverge.  If  the  Lyapunov
exponents are all zero or negative, the trajectories do not diverge and the system is stable. If one
or more Lyapunov exponents is positive, the trajectories diverge and the system is unstable. A
requirement  for  chaos  is  that  at  least  one  Lyapunov exponent  be  positive18.  For  the  chaotic
regime of Duffing's oscillator used as an example in this paper, λ ≈ .01 (Moon, 1987). Equally
important is the relationship of the Lyapunov exponents and an ability to predict the behavior of
a system. The more exponents one can correctly find, the better predictions will be19.

Noise, however, corrupts the local Jacobian and can affect the accuracy of the calculation
of the Lyapunov exponents, as shown in figure 25 (Abarbanel: 1990). For dE = 3 the exponents
are robust for very small levels of noise but rapidly loose credibility as the noise level rises.
Thus,  one  must  work  with  the  best  data  possible,  many  samples,  or  use  a  noise-reduction
algorithm, if the results are to be believable.

IX. Compute the Local Lyapunov Exponents,λ.

As defined above, Lyapunov exponents are a global invariant because they describe the
effect  of  infinitesimal  perturbations  over  infinite  time.  Recent  approaches  examine  how
perturbations  grow in  finite  time20,21.  The  "local"  Lyapunov  exponents  measure  the  average
divergence of trajectories in different regions of state space for finite lengths. For example, in
figure 17, there are regions where the trajectories do not diverge. The distance between them

15Reggie Brown, Paul Bryant and Henry D.I. Abarbanel, "Computing the Lyapunov Spectrum of a 
Dynamical System from Observed Time Series", Physical Review Journal, March 15, 1991.

16J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57 (1985) 617.
17Eckmann, J.P., S.O. Kamphorst, D. Ruelle, and S. Ciliberto, Phys. Rev. A34, 4971 (1986).
18Grebogi, C.E. Ott, S. Pelikan, and J. A. Yorke, Plasma Preprint UMLPF 84-014 October 1983.
19Abarbanel, Henry D. I., "Determining the Lyapunov Spectrum of a Dynamical System from Observed 

Data", Presented at the SIAM Conference on Dynamical Systems, Orlando, Florida, 8 May 1990.
20Abarbanel, H. D. I., R. Brown, and Matthew Kennel, "Variation of Lyapunov Exponents on a Strange 

Attractor", Journal of Nonlinear Science, 1, 175-199 (1991).
21Abarbanel, H.D.I and M.M. Sushchik, “True Lyapunov Exponents and Models of Chaotic Data”, Int. J. of

Bifurcation and Chaos, 3, 543-550 (1993)



remains fairly constant for long periods. It is only in the center "core" where the fractal nature of
the orbits are apparent and the Lyapunov exponents are positive and large. The issue addressed
by local Lyapunov exponents is predictability22.  Again, referring to figure 17, there are large
regions of the state space where knowledge of a state vector permits prediction over a reasonable
long time. There are other regions (of very large positive local Lyapunov exponents) where there
is almost no predictability. These considerations are important for the study of many systems
including economics.

Spurious exponents and their elimination

One problem caused by selecting too high a global dimension is that Lyapunov exponents
will be generated for all dimensions. The exponents for dimensions above  dE are spurious. In
fact, exponents for dimensions greater than the degrees-of-freedom that are active locally are
also  spurious.  Identification  of  these  unwanted,  misleading,  inaccurate,  and  meaningless
parameters is accomplished by reversing the time series and computing the Lyapunov exponents
for both the forward and backward time evolutions23.

The signs of the exponents for the reverse time series are changed and the values are
compared to the forward pass. The true exponents for each dimension will now be identical (or
very close) for both the forward and reverse pass. The spurious exponents will have different
values.

This  is  especially  evident  in  noisy  data.  Because  the  noise  occupies  space  in  the
dimensions above the active dynamics (the local dimension), the spurious exponents are affected
in unpredictable ways.

Fortuitously, we can address all three issues with a single set of calculations. The local
Lyapunov exponents are calculated for a variety of lengths ( giving the average local exponents),
including a length that is sufficient to cover the attractor ( generally giving a good estimate of the
global exponents). The time reversed exponents are computed for the same data, identifying the
spurious exponents and providing an indication of the local dimension (dL). The one trap here is
that an adequate  dE must be determined prior to performing the calculations. Fortunately, the
False Nearest Neighbor test has already provided this.

22Abarbanel, H. D. I., R. Brown, and Matthew Kennel, "Local Lyapunov Exponents Computed from 
Observed Data", accepted for the Journal of Nonlinear Science (Sept. 1992).

23Ulrich Parlitz, “Identification of true and spurious Lyapunov exponents from time series,” Int. J. of 
Bifurcation and Chaos, Vol 2, No. 1 (1992) 155-165.



X. Compute the Moments of Invariant Distribution.

The moments  of  invariant  distribution measure the number of  times an orbit  visits  a
region of the embedding space. The invariant density of orbits is computed by dividing the total
data set into two parts. The second part is further divided into G groups of length L. A G x G
matrix is generated and the eigenvalues and eigenvectors are computed. After normalization, a
set of G orthonormal functions that are invariants of the mapping can be found24. Although not
used for classification, invariant moments are used for noise reduction.

NOISE REDUCTION BY PROBABILISTIC SCALED CLEANING

Signals  may  be  generated  by  dynamical  systems  that  are  of  higher  dimension  than
signals of interest. These high dimension signals completely fill the lower dimension state space
and are called "noise."  In our paradigm there is no such thing as noise in the traditional
sense. In any d dimensional state space there are signals of dimension d or lower that can be
characterized and exploited. There are signals of dimension greater than d that fill  the state
space and corrupt measurements of the lower dimension signals.

Noise is just a signal from a higher dimension dynamical system. Our approach is to
treat  both  the  signal  and  the  noise  as  deterministic  processes  that  can  be  separated  in  an
appropriate state space.

Noise probably has  components  from many dimensions.  Elimination of  noise from a
source of some dimension still leaves components from even higher dimensions. But, from a
signal  detection  perspective,  reduction  of  some portion  of  the  noise  has  the  same effect  as
boosting  detector  SNR by  improving  the  signal.  The  fundamental  issue  is  that  methods  of
improving signal strength may be expensive or intractable. Reducing noise by applying chaos
theory has the same effect and may be relatively inexpensive.

Noise  reduction  by  Probabilistic  Scaled  Cleaning  (PSC)  determines  the  invariant
properties of a signal's attractor, and then uses this knowledge to separate the signal from other
data. PSC can be used to separate a deterministic signal from higher dimension noise, or can be
used to separate a complex signal (such as speech) from low-dimension chaotic noise. The only
distinction is in which data are called the signal and which are called noise. As long as one of
them has  an  invariant  attractor,  PSC will  work.  A videotape  made  by  Professor  Abarbanel
demonstrating PSC is available either from Randle, Inc. or The Institute for Nonlinear Science.

Procedurally,  PSC  works  as  follows25.  The  data  to  be  cleaned  are  selected  and,  if
available, a reference orbit is selected. A state space reconstruction of the signal is performed
using an appropriate time lag. If the embedding dimension is too large, the only penalty is that
the computations are more expensive. If the dimension is too low, then the distances used to
estimate  the  distributions  will  be  incorrectly  computed.  But,  as  the  embedding  dimension
approaches the correct minimum dimension, the error may become small  and the errors that

24Abarbanel, Henry D. I., "Prediction in Chaotic Nonlinear Systems: Time Series Analysis for Nonperiodic 
Evolution," Lectures at the NATO Advanced Research Workshop on MODEL ECOSYSTEMS AND THEIR 
CHANGES, Matrea, Italy September 4 - 8, 1989. INLS preprint 1020.

25Marteau, P.-F. and H. D. I. Abarbanel, “Noise Reduction in Chaotic Time Series Using Scaled 
Probabilistic Methods”, Journal of Nonlinear Science, 1, 313-343 (1991).



accrue in the distributions may become less significant. We have not explored this issue in detail.
Early studies INLS/UCSD show that even if the estimate of the embedding dimension is low,
significant noise reduction is still possible.

PSC analyzes the conditional probability that the state of the system is S when the scalar
number measured by the sensor is  O. This conditional probability is  P(S|O) and the task is to
maximize this conditional probability over the possible values of the true state S.

PSC uses a reference orbit from the system to find the state probability density and the
translation  probability  from  some  state  to  another  at  a  later  time.  Essentially,  the  Markov
property  of  the  dynamics  is  translated  into  probability  densities.  When  presented  with  an
observed chaos plus "another signal," PSC shifts the observations around in state space until the
densities are accurately matched. An estimate of the correct location of chaotic signal in state
space results from this. The "other signal" is estimated by subtraction from the observations.

Ideally, the reference orbit is obtained from clean observations of a signal. If clean data
are not available, a noisy orbit can be used for "self cleaning." The limits on self cleaning are an
issue that remains to be studied.

PSC is, in essence, a maximum posteriori (or MAP) estimator method. It adds to the
usual MAP procedures: (1) analysis in d-dimension space appropriate to the problem; (2) an
evaluation  of  probability  densities  from  the  reference  signal  rather  than  from  a  priori
assumptions; and (3) a recurrsive procedure that explores finer and finer state space scales at
each pass.

Two other approaches to noise reduction have been developed by Stephen Hammel and
Eric Kostelich. Hammel attacks noise reduction by "shadowing" where a clean (true) orbit of a
known system (i.e., the map is known) is constructed from a noisy orbit by using a recurrsive
process that operates on an entire noisy orbit to yield a new, less noisy, orbit. "The refinement
process is then applied to this new, cleaner orbit to produce a third orbit, expected to be less
noisy than its predecessor." The process may be repeated up to 30 times, depending on the orbit
length and the noise level.  The Hammel noise reduction algorithm26 and its  generalizations27
presumes  that  the  mapping  function  is  known and  seeks  solutions  that  map  new data  in  a
numerically stable manner that exploits stable and unstable manifolds in the state space. Recent
research suggests that the Hammel noise reduction technique may be useful in Kalman filters,
which can be sensitive to noise.

Kostelich's approach is to minimize the effect of noise by assuming that the observed
trajectory is a noisy representation of the true trajectory and that the trajectory dynamics are near
linear over small regions. An ensemble of points is used to compute a linear approximation of the
dynamics at each point on the attractor. The observed trajectories are replaced with nearby ones
that best satisfy the linear approximations28.

26Stephen M Hammel, "A noise reduction method for chaotic systems", Physics Letters A, 148, 8,9 pp 
421-428, 3 Sept. 1990.

27Abarbanel, H. D. I., S. M. Hammel, P.-F. Marteau, and J.  J. ("Sid") Sidorowich, "Scaled Linear Cleaning 
of Contaminated Chaotic Orbits", UCSD/INLS Preprint, Spring, 1992.

28Kostelich, Eric J. and Yorke, James A., "Noise Reduction: Finding the Simplest Dynamical System 
Consistent with the Data," Physica D 41 (1990) 183-196.
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